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POLYMER FRACTIONATION CALCULATIONS USING 
REFINED FREE ENERGY RELATIONS 

M. T. RATZSCH,* S. ENDERS, L. TSCHERSICH, and H. KEHLEN 

Chemistry Department 
“Carl Schorlemmer” Technical University 
DDR-4200 Merseburg, German Democratic Republic 

ABSTRACT 

In an earlier paper, continuous thermodynamics was applied to 
calculate polymer fractionation procedures leading to lucid equa- 
tions favorable for computer simulations. The present paper re- 
fines that treatment by applying more sophisticated Gibbs free en- 
ergy relations. The simulation results agree closely with the 
experimental data, assuming the Flory-Huggins interaction param- 
eter to be a function of the concentration. 

INTRODUCTION 

The molecular weight fractionation based on small solubility differ- 
ences of the species was extensively used for many years as the main 
method for determining the molecular weight distribution (MWD) of 
synthetic polymers. The direct use of such continuous distribution func- 
tions (instead of the amounts of the individual species) forms the basic 
idea of continuous thermodynamics [2, 31, a version of thermodynamics 
which permits concise treatment of all complex multicomponent systems. 
Continuous thermodynamics was also applied to polymer systems [4, 
51 (for a survey, see Ref. 6) and, in particular, to successive polymer 
fractionations on the basis of solubility differences [ l ] .  In this way, 
equations clearly describing the fractionation procedures were obtained. 
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32 RATZSCH ET AL. 

In the paper referred to, the simple Huggins’ X-parameter concept was 
chosen for modeling the Gibbs free energy. However, to compare the 
calculated results with experimental fractionation data, the use of a more 
realistic expression for the free energy is necessary. Therefore, in this 
paper, various relations for the Gibbs free energy will be used to simulate 
successive solution fractionation (SSF) and successive precipitation frac- 
tionation (SPF). In particular, the polymer/solvent interaction parame- 
ter of Flory-Huggins’ lattice theory [7, 81 will be assumed to be a function 
of the polymer contents, of the temperature, and/or a functional of the 
distribution function. Furthermore, the bridging theory, suggested by 
Koningsveld, Stockmayer, Kennedy, and Kleintjens [9], will be applied. 

SUCCESSIVE SOLUTION FRACTIONATION (SSF) 

A solution of a polymer (B) in a solvent (A) is cooled to obtain liquid- 
liquid phase separation into a polymer-lean Phase I and a polymer-rich 
Phase 11. The polymer-lean phase is removed from the solution. The 
first polymer fraction is obtained from the polymer-lean phase by evapo- 
rating to dryness. Solvent is added to the polymer-rich phase up to the 
volume of the original feed phase, thus providing the mother solution 
for the next fractionation step, etc. The final fraction is obtained from 
the precipitate of the last step. 

In SSF, to a very close approximation, the total number of segments 
is the same in the feed phases of all steps leading to the relation [l] 

The species of the polymer are identified by their segment numbers r, 
defined as the ratio of the hard-core volume of the species considered 
with relation to the hard-core volume of an arbitrarily chosen standard 
segment. The superscript F stands for feed phase, and the subscript j 
indicates the fractionation step j .  The quantity $ is the overall segment 
fraction of the polymer, and W is the continuous distribution function 
defined by the statement that W(r)dr equals the (relative) segment frac- 
tion of all polymer species with segment numbers between r and r + dr. 
Furthermore, 4 is the total amount of segments in Phase I1 divided by 
the total amount of segments in the feed. Treating polymer fraction- 
ation, the introduction of the precipitation rate K(r) is favorable. K(r) is 
defined in an analogous way as t$ but refers to the amounts of segment 
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POLYMER FRACTIO NATlO N CALC U LATlO N S 33 

of the polymer species with segment numbers between r and r + dr. In 
continuous thermodynamics the precipitation rate K for the fraction- 
ation step j reads 

where 

The segment-molar activity coefficients f describe the deviations from a 
Flory-Huggins mixture (with x = 0). These coefficients are to be calcu- 
- lated according to the ?elation for the segment-molar Gibbs free energy 
G since In fB and In f A  are the partial segment-molar quantitieswith 
respect to GE/RT, i.e., the segment-molar excess Gibbs energy GE di- 
vided by the gas constant R and the temperature T. The quantity 7 is the 
number-average segment number for the phase considered given by 

- 

where rA is the segment number of the solvent molecules. 

coexistence curves leads to the following system of equations [1, 51: 
Combination of Eqs. (1) and (2) with the equations describing the 
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34 RATZSCH ET AL. 

where 

This system of equations permits the successive calculation of the un- 
known quantities $;', F;', and $j  (or T,) for all fractionation steps j. The 
calculation has to be performed successively, i.e., at first for j = 1, then 
for j = 2, etc. Knowing these quantities, the distribution function of 
the ith polymer fraction w!(r)  may easily be calculated from the initial 
polymer distribution W,F(r): 

SUCCESSIVE PRECIPITATION FRACTIONATION (SPF) 

When the temperature of the solution is lowered gradually, the precip- 
itates are successively separated from the solution, leading to the poly- 
mer fractionsj = 1 ,  2, . . . . The final fraction is obtained by evaporat- 
ing the precipitate of the last step. In SPF, Phase I from S t e p j  is used 
directly as the feed phase for Step ( j  + 1). Hence, the following rela- 
tions apply: 

With the aid of Eqs. (2), (3), (10)-(12), and of the equation describing 
the coexistence curve, a system of equations for the simulation of the 
successive precipitation fractionation [ 11 is obtained. 
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POLYMER FRACTIONATION CALCULATIONS 35 

These relations correspond to Eqs. (5)-(7) in the case of SSF. They 
permit the calculation of the unknown quantities $ ; I ,  $, and +j (or T,) 
from the composition of the initial polymer solution, i.e., from $7 and 
WT(r). If these unknowns are calculated, the distribution functions 
wj'(r) of the polymer fractions may easily be obtained from 

FREE ENERGY MODELS 

On the basis of Flory-Huggins' lattice theory, a deviation of a polymer 
solution from an ideal-atherrnic-mixture is characterized by the segment- 
molar excess Gibbs free energy GE according to 

The dimensionless polymer/solvent interaction quantity g is assumed to 
be a function with respect to $ and T and a functional with respect to 
the continuous distribution function W. The influence of the pressure 
on g is neglected. 

The original Flory-Huggins theory [7, 81 assumes the interaction 
quantity g to be a function only of the temperature: 

Here xo is assumed to be a linear function of 1/T, i.e., PI and PZ are 
empirical constants for a given polymer/solvent system. 
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36 RATZSCH ET AL. 

It is well known that the original Flory-Huggins theory (Eq. 18) often 
fails in describing a real polymer solution. Experimental data show that 
the polymer/solvent interaction quantity g is usually a function of the 
polymer contents of the solution. Kamide and Sugamiya [ 101 formulated 

Here the parameter p expresses how strongly the polymer contents $ 
influences the polymer/solvent interaction quantity g. More generally, p 
may be a function of TNB of the polymer and of the temperature T of the 
solution. However, experimental results show that p can often be re- 
garded approximately as a constant within the experimental uncertainties 
over a wide range of FNB and T. In the calculations p was assumed to be 
constant throughout a fractionation run. 

On the basis of theoretical considerations on the chain dimensions, 
Orofino and Flory [ 1 11 derived another relation reading 

The parameter y may be determined from the surface/volume ratio of 
the segments. In the calculations, y was again assumed to be constant 
throughout a fractionation run. Koningsveld and Kleintjens [ 121 intro- 
duced an additional fitting quantity a: 

The parameter a accounts for the segment-molar excess entropy. Taking 
into consideration that g is also a function of the number-average seg- 
ment number TNB, the experimental results suggest a linear relation be- 
tween TNB and the reciprocal segment number [ 131. Since, according to 
Eq. (4), TNB is a functional with respect to the distribution function W(r), 
this also holds for g, i.e., g = g($,T;W). In this paper the relation [14] 
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POLYMER FRACTIONATION CALCULATIONS 37 

is used where Q is an additional fitting parameter. Since g is a functional 
of W(r), the segment-molar activity coefficients must also be a func- 
tional. 

In contrast to these ideas, Koningsveld, Stockmayer, Kennedy, and 
Kleintjens [9] used an interpolation procedure to provide continuity be- 
tween the two extremes of polymer solution behavior; the concentrated- 
solution lattice formalism and the excluded-volume theory for dilute 
solutions. The authors proposed to write g for polymer solutions of 
arbitrary concentrations simply as a linear combination of the two ex- 
treme cases: 

The fraction P equals the probability that no polymer segment is found 
in a given small volume element in the solution. This may be written as 

P = exp (-A2$) (24) 

where 

Here a is a geometrical factor near unity and b is the proportionality 
constant between the root-mean-square radius of gyration of the coil in 
its unperturbated state and the root of chain length. NAv is Avogadro’s 
number. V, is the molar volume of the solvent and vB is the partial 
specific volume of the polymer. The quantity Fwa means the mass-average 
segment number of the polymer. As a further approximation, g,,, - 
gcoNc is represented by its limiting value for vanishing $ 

leading to 

with g+ independent of concentration. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
9
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



38 RATZSCH ET AL. 

It may be shown by the excluded-volume treatment [15] that 

Here XI  is a function of the temperature but not of the composition. 
From the several proposed relations for h(z), the following one, dating 
back to Stockmayer [16], was selected: 

= 1/(1 + 2.8672) 

To account for the polydispersity, the segment number r is replaced by 
the mass-average segment number 7,. For sufficiently concentrated so- 
lutions, gcONc may be described by Eq. (21), leading finally to 

(0.5 - h,)[l - exp (-X&)/(l + 2.867z)I + 
1 + Xz 

SIMULATION 

In the computer simulation of hypothetical fractionation runs [ 10, 
171, equal amounts of the fractions were assumed. In experiments it is 
difficult to verify this condition. The amounts of the fractions are ex- 
pressed with the quantities qp and qs being defined as the quotients of 
the overall amounts of polymer segments in Phase I1 or Phase I, n i j  or 
nBJ, respectively, of the considered separation step, and in the original 
polymer n:, 

1 

To permit a comparison of the simulation calculations with experimental 
results, the experimental values qpJ or qs, were used for all fractionation 
steps. 
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POLYMER FRACTIONATION CALCULATIONS 39 
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FIG. 1. SPF for polystyrene + methylcyclohexane: polystyrene segment frac- 
tion +'' in several fractions F. Circles are experimental values [13]; broken line is 
computer simulation with Eq. (18); full line is computer simulation with Eq. 
(20). 

In this paper, SSF and SPF experiments for atactic polystyrene in 
methylcyclohexane and phase separations for atactic polystyrene in cy- 
clohexane by Kamide, Miyazaki, and Abe [13] were chosen to compare 
the simulation calculations with experimental data. The computer simu- 
lations were performed for solutions with the initial overall polymer 
segment fraction $' = 0.0094 of polystyrene described by a Schulz- 
Flory distribution with 7, = 2400 and T W / F m  = 2 . 8 .  

RESULTS AND DISCUSSION 

Original Lattice Theory 

Here the g-parameter is given by Eq. (18). In Fig. 1 for SPF of the 
system polystyrene + methylcyclohexane, the calculated polymer seg- 
ment fractions in the polymer-rich phase are compared with experimen- 
tal values. For SPF and also for SSF, the calculated values are always 
too small. The phase volume ratio R = V'/V" also proves to be too 
small (Fig. 2).  Other quantities are also not calculated correctly, as 
shown in Fig. 3 for the number-average molecular weight of the polymer 
in the Phase I1 in SPF. The correct description of the number-average 
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40 RATZSCH ET AL. 
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FIG. 2. SSF for polystyrene + methylcyclohexane: phase volume ratio R in 
several fractions F.  Circles are experimental values 1131; broken line is computer 
simulation with Eq. (18); full line is computer simulation with Eq. (20). 
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FIG, 3. SPF for polystyrene + methylcyclohexane: number-average molar 
mass MG of polymer-rich phases in several fractions F. Circles are experimental 
values [13]; broken line is computer simulation with Eq. (18); full line is com- 
puter simulation with Eq. (20). 
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POLYMER FRACTIONATION CALCULATIONS 41 

molecular weight is important since the determination of the distribution 
function of the original polymer is the aim of analytical fractionations. 
This function is obtained from the number-average molecular weights of 
the fractions. Hence, the result of the comparison is that the experimen- 
tal fractionation data of the system polystyrene + methylcyclohexane 
can be described only qualitatively by the original lattice theory, Eq. 
(18). 

g depends on Concentration 

In Eqs. (19)-(21) the g-parameter is assumed to be a function of the 
concentration $. Applying Eq. (19), Kamide, Miyazaki, and Abe [13] 
proposed p = 0.7 for the system polystyrene + methylcyclohexane and 
p =I 0.6 for the system polystyrene + cyclohexane. In Eqs. (20) and 
(21) the parameter y was fitted to the first fraction. As a result, in the 
calculations y was assumed to be 0.3 for the system polystyrene + 
methylcyclohexane and 0.24 for the system polystyrene + cyclohexane. 
The parameter a in Eq. (21) is known in the existing literature only for 
the system polystyrene + cyclohexane [ 121. The experimental spinoidal 
points [12] describe the theoretical curve well, assuming a = -0.1597. 

Applying Eqs. (19)-(21) to calculate the spinoidal curve or the critical 
point, drastic differences between the results occur. But in applying these 
equations to simulate polymer fractionation, no marked differences are 
found. The differences become perceptible only if large qp - or qs- val- 
ues are considered. 

The polymer segment fraction in a polymer-rich phase at a given 
fractionation step increases strongly with p or y. Comparison of simu- 
lated and experimental data shows that the consideration of the interac- 
tion quantity as a function of concentration leads to a better agreement 
of the segment fractions in polymer-rich phases (Fig. 1). The experimen- 
tal points are in reasonable consistency with the calculated points by 
applyingp = 0.7 or y = 0.3. 

The phase volume ratio R increases markedly with increasing p or y, 
particularly in higher fractionation steps of SSF and in lower steps of 
SPF, Le., in the steps yielding fractions with low molecular weights. The 
value of R in SPF is always larger than that in SSF. In Fig. 2 the effect 
of p or y on R by SPF is demonstrated. The difference between the 
experimental and calculated R values at p = 0.7 or y = 0.3 for polysty- 
rene + methylcyclohexane is within the experimental error, independent 
of the fractionation run (SPF or SSF). 
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42 RATZSCH ET AL. 
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FIG. 4. SPF for polystyrene + methylcyclohexane: phase separation temper- 
atures Tin several fractions F. Circles are experimental values [13]; broken line 
is computer simulation with parameters obtained from spinoidal data [14]; full 
line is computer simulation with parameters obtained from SSF. 

Figure 3 shows that a good description of the experimental number- 
average molecular weight is achieved. The molecular weight distribution 
curve depends markedly on the p - or y -values chosen. The polydisper- 
sity of the fractions, as expressed by i-w/i=m - 1, decreases gradually 
with increasing p or y, irrespective of the fractionation schemes. In other 
words, larger p or y gives narrower fractions. It is noticeable that the 
maximum of the distribution function in the first fractions shifts to  the 
higher molecular masses region with increasing p or y as shown in Fig. 
3, where the number-average molecular masses are plotted versus the 
fractionation step j .  In the higher fractionation steps, no shift of the 
maximum occurs (Fig. 3). The effect of p or y on i-k for the fractions 
separated by SSF is much smaller than that in SPF. 

The values of xo in the fractionation calculations may be converted to 
T by Eq. (18). For the system polystyrene + methylcyclohexane, Kam- 
ide, Sugamiya, Ogawa, Nakaywa, and Baba [18] suggested the use of 
following parameter values: 

p, = -0.759 and Pz = 438 K 

These values were obtained by fitting to spinoidal data. Figure 4 illus- 
trates the change of T during a given SPF process. The phase separation 
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POLYMER FRACTIONATION CALCULATIONS 43 

temperatures obtained by computer simulation with these parameters 
differ essentially from the experimental temperatures. Therefore, the 
parameters 0, and Pt were fitted to temperatures from SSF, resulting in 

/3, = 0.468 and 0 = 85.459K 

By using these values, the accuracy of the simulation of SPF is greatly 
improved (Fig. 4). But the difference between experimental and calcu- 
lated phase separation temperatures is still large for the fractions con- 
taining the short polymer chains, independent of the fractionation run 
(SPF or SSF). 

g Depends on Distribution Function 

The dependence of g on the continuous distribution function is taken 
into consideration by Eq. (22). Calculations with Eq. (22) show that the 
polystyrene segment fraction $I' in the polymer-rich phase increases if Q 
has a positive value and decreases if Q is negative. Due to the large 
experimental errors, it seems to be senseless to fit Q to fractionation 
data. Hence, the parameter Q was arbitrarily chosen to equal 20 or -20. 
Applying Eq. (22) only, the phase separation temperatures of SSF in 
the first fractions could be improved. The parameter g proves to be 
approximately independent of im for small qp-or q,-values. For large 
qp values, the parameter g decreases a little with increasing im. But the 
constancy of g over the whole im range can be regarded as a good 
approximation. 

Bridging Theory 

In applying th_e bridging theory to polymer fractionation, Eq. (31) 
has to be used. CE depends on the mass-average segment number F m  
(Eqs. 25 and 33). The mass-average segment number forms an additional 
functional (first moment) of the distribution function 

i.e., in the calculations the additional unknown F, occurs. Hence, an 
additional equation is necessary which may be obtained from the mass 
balance and reads 
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44 RATZSCH ET AL. 

Applying the bridging theory, the mathematical expense and the com- 
puter time grow drastically. The computer time increases by 30%. The 
molecular characteristics for the calculation of the segment molar activ- 
ity coefficients are found in the literature only in connection with the 
system polystyrene + cyclohexane. The following values were used for 
the calculations: 

(Y = -0.1597,pI = 0.4987,p2 = 111.74K,y z= 0.2365, 
V ,  = 0.925 cm3/g, VA = 108 cm3/mol, b2 = 7.6 x 10-'ocm*, 
A, = 0.57, u = 1 

The parameters a, PI, P2, and y were fitted by Koningsveld, Stockmayer, 
Kennedy and Kleintjens [9] to the spinoidal curve. The molecular charac- 
teristics, e.g., the partial specific volume of the polymer in the solvent, 
are taken from standard sources [19]. Experimental fractionation data 
for the system polystyrene -t cyclohexane are found in the literature 
only for the first fraction, i.e., simple phase separation. Therefore, a 
comparison with the experiment could be made only for these data (Fig. 
5). In order to make a comparison, analogous computer simulations 
were also carried out by using Eqs. (19)-(21), showing that these equa- 
tions provide similar results (Fig. 5). For qp values with practical interest 
(< 0. l), the bridging theory, Eq. (31), provides practically the same re- 
sults as the refined lattice theory. Furthermore, the bridging theory does 
not permit calculation of the phase separation temperatures using pa- 
rameters obtained from spinoidal data. These results do not justify the 
larger numerical expense of the bridging theory. Its application results 
only in a further increase of the number of parameters and of computing 
time. 

CONCLUSION 

In computer simulation of SSF and SPF for the system_polystyrene 
+ cyclohexane or polystyrene + methylcyclohexane, the GE relation 
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Yn 1 0.3 - 

0.2 - 

0.1 - 

0 - 0:2 ' 0:4 ' 016 ' 018 ' 

q P  - 
FIG. 5 .  Phase separation for polystyrene + cyclohexane: polystyrene seg- 

ment fractions 4'' for various amounts qp of the fractions. Circles are experimen- 
tal values [13]; broken line is computer simulation with Eq. (21); full line is 
computer simulation with Eq. (31). 

which describes the g parameter as a function of $, according to  the 
theory by Orofino and Flory [ l  11, should be used. The parameter y may 
be determined from molecular data. To  calculate the phase separation 
temperatures, the parameters 0, and p2 are needed. These should be 
fitted to the coexistence curve, neglecting the critical area. 
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